Cleavage of rhesus rotavirus VP4 after arginine 247 is essential for rotavirus-like particle-induced fusion from without.

نویسندگان

  • J M Gilbert
  • H B Greenberg
چکیده

We recently described our finding that recombinant baculovirus-produced virus-like particles (VLPs) can induce cell-cell fusion similar to that induced by intact rotavirus in our assay for viral entry into tissue culture cells (J. M. Gilbert and H. B. Greenberg, J. Virol. 71:4555-4563, 1997). The conditions required for syncytium formation are similar to those for viral penetration of the plasma membrane during the course of viral infection. This VLP-mediated fusion activity was dependent on the presence of the outer-layer proteins, viral protein 4 (VP4) and VP7, and on the trypsinization of VP4. Fusion activity occurred only with cells that are permissive for rotavirus infection. Here we begin to dissect the role of VP4 in rotavirus entry by examining the importance of the precise trypsin cleavage of VP4 and the activation of VP4 function related to viral entry. We present evidence that the elimination of the three trypsin-susceptible arginine residues of VP4 by specific site-directed mutagenesis prevents syncytium formation. Two of the three arginine residues in VP4 are dispensable for syncytium formation, and only the arginine residue at site 247 appears to be required for activation of VP4 functions and cell-cell fusion. Using the recombinant VLPs in our syncytium assay will aid in understanding the conformational changes that occur in VP4 involved in rotavirus penetration into host cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Virus-like particle-induced fusion from without in tissue culture cells: role of outer-layer proteins VP4 and VP7.

We recently described an assay that measures fusion from without induced in tissue culture cells by rotavirus, a nonenveloped, triple-protein-layered member of the Reoviridae family (M. M. Falconer, J. M. Gilbert, A. M. Roper, H. B. Greenberg, and J. S. Gavora, J. Virol. 69:5582-5591, 1995). The conditions required for syncytium formation are similar to those for viral penetration of the plasma...

متن کامل

Atomic model of an infectious rotavirus particle.

Non-enveloped viruses of different types have evolved distinct mechanisms for penetrating a cellular membrane during infection. Rotavirus penetration appears to occur by a process resembling enveloped-virus fusion: membrane distortion linked to conformational changes in a viral protein. Evidence for such a mechanism comes from crystallographic analyses of fragments of VP4, the rotavirus-penetra...

متن کامل

Rotavirus-induced fusion from without in tissue culture cells.

We present the first evidence of fusion from without induced in tissue culture cells by a nonenveloped virus. Electron micrographs of two strains of rotavirus, bovine rotavirus C486 and rhesus rotavirus, show that virally mediated cell-cell fusion occurs within 1 h postinfection. Trypsin activation is necessary for rotavirus to mediate cell-cell fusion. The extent of fusion is relative to the a...

متن کامل

Molecular analysis of the VP7, VP4, VP6, NSP4, and NSP5/6 genes of a buffalo rotavirus strain: identification of the rare P[3] rhesus rotavirus-like VP4 gene allele.

We report the detection and molecular characterization of a rotavirus strain, 10733, isolated from the feces of a buffalo calf affected with diarrhea in Italy. Strain 10733 was classified as a P[3] rotavirus, as the VP8* trypsin cleavage product of the VP4 protein revealed a high amino acid identity (96.2%) with that of rhesus rotavirus strain RRV (P5B[3]), used as the recipient virus in the hu...

متن کامل

Effect of mutations in VP5 hydrophobic loops on rotavirus cell entry.

Experiments in cell-free systems have demonstrated that the VP5 cleavage fragment of the rotavirus spike protein, VP4, undergoes a foldback rearrangement that translocates three clustered hydrophobic loops from one end of the molecule to the other. This conformational change resembles the foldback rearrangements of enveloped virus fusion proteins. By recoating rotavirus subviral particles with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 72 6  شماره 

صفحات  -

تاریخ انتشار 1998